Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256194

RESUMO

Polymer nanocomposites filled with carbon nanoparticles (CNPs) are a hot topic in materials science. This article discusses the current research on the use of these materials as interfacial electron transfer films for solid contact potentiometric membrane sensors (SC-PMSs). The results of a comparative study of plasticized poly (vinyl chloride) (pPVC) matrices modified with single-walled carbon nanotubes (SWCNTs), fullerenes-C60, and their hybrid ensemble (SWCNTs-C60) are reported. The morphological characteristics and electrical conductivity of the prepared nanostructured composite films are reported. It was found that the specific electrical conductivity of the pPVC/SWCNTs-C60 polymer film was higher than that of pPVC filled with individual nanocomponents. The effectiveness of this composite material as an electron transfer film in a new potentiometric membrane sensor for detecting phenylpyruvic acid (in anionic form) was demonstrated. Screening for this metabolic product of phenylalanine in body fluids is of significant diagnostic interest in phenylketonuria (dementia), viral hepatitis, and alcoholism. The developed sensor showed a stable and fast Nernstian response for phenylpyruvate ions in aqueous solutions over the wide linear concentration range of 5 × 10-7-1 × 10-3 M, with a detection limit of 10-7.2 M.


Assuntos
Nanocompostos , Nanotubos de Carbono , Ácidos Fenilpirúvicos , Cloreto de Vinil , Membranas , Poli A , Polímeros
2.
Materials (Basel) ; 16(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37763411

RESUMO

The development of scientific and technological foundations for the creation of high-performance energy storage devices is becoming increasingly important due to the rapid development of microelectronics, including flexible and wearable microelectronics. Supercapacitors are indispensable devices for the power supply of systems requiring high power, high charging-discharging rates, cyclic stability, and long service life and a wide range of operating temperatures (from -40 to 70 °C). The use of printing technologies gives an opportunity to move the production of such devices to a new level due to the possibility of the automated formation of micro-supercapacitors (including flexible, stretchable, wearable) with the required type of geometric implementation, to reduce time and labour costs for their creation, and to expand the prospects of their commercialization and widespread use. Within the framework of this review, we have focused on the consideration of the key commonly used supercapacitor electrode materials and highlighted examples of their successful printing in the process of assembling miniature energy storage devices.

3.
Materials (Basel) ; 16(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569912

RESUMO

The formation of a cellular hierarchically organized NiO film on a carbon paper substrate under hydrothermal conditions using triethanolamine as a base has been studied. The thermal behavior of the carbon paper substrate with the applied semi-product shell was studied using synchronous thermal analysis (TGA/DSC) and it was demonstrated that such modification of the material surface leads to a noticeable increase in its thermal stability. Using scanning electron microscopy (SEM), it was shown that the NiO film grown on the carbon fiber surface is characterized by a complex cellular morphology, organized by partially layered individual nanosheets of about 4-5 nm thickness and lateral dimensions up to 1-2 µm, some edges and folds of which are located vertically relative to the carbon fiber surface. The surface of the obtained material was also examined using atomic force microscopy (AFM), and the electronic work function of the oxide shell surface was evaluated using the Kelvin probe force microscopy (KPFM) method. The electrochemical parameters of the obtained flexible NiO/CP electrode were analyzed: the dependence of the specific capacitance on the current density was determined and the stability of the material during cycling was studied, which showed that the proposed approach is promising for manufacturing hierarchically organized electrodes for flexible supercapacitors.

4.
Materials (Basel) ; 16(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37374386

RESUMO

The hydrothermal synthesis of a nanosized NiCo2O4 oxide with several levels of hierarchical self-organization was studied. Using X-ray diffraction analysis (XRD) and Fourier-transform infrared (FTIR) spectroscopy, it was determined that under the selected synthesis conditions, a nickel-cobalt carbonate hydroxide hydrate of the composition M(CO3)0.5(OH)·0.11H2O (where M-Ni2+ and Co2+) is formed as a semi-product. The conditions of semi-product transformation into the target oxide were determined by simultaneous thermal analysis. It was found by means of scanning electron microscopy (SEM) that the main powder fraction consists of hierarchically organized microspheres of 3-10 µm in diameter, and individual nanorods are observed as the second fraction of the powder. Nanorod microstructure was further studied by transmission electron microscopy (TEM). A hierarchically organized NiCo2O4 film was printed on the surface of a flexible carbon paper (CP) using an optimized microplotter printing technique and functional inks based on the obtained oxide powder. It was shown by XRD, TEM, and atomic force microscopy (AFM) that the crystalline structure and microstructural features of the oxide particles are preserved when deposited on the surface of the flexible substrate. It was found that the obtained electrode sample is characterized by a specific capacitance value of 420 F/g at a current density of 1 A/g, and the capacitance loss during 2000 charge-discharge cycles at 10 A/g is 10%, which indicates a high material stability. It was established that the proposed synthesis and printing technology enables the efficient automated formation of corresponding miniature electrode nanostructures as promising components for flexible planar supercapacitors.

5.
Biosensors (Basel) ; 13(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37185520

RESUMO

ZnO/Fe2O3 nanocomposites with different concentration and thickness of the Fe2O3 layer were obtained by two-stage aerosol vapor deposition (AACVD). It was shown that the ZnO particles have a wurtzite structure with an average size of 51-66 nm, and the iron oxide particles on the ZnO surface have a hematite structure and an average size of 23-28 nm. According to EDX data, the iron content in the films was found to be 1.3-5.8 at.%. The optical properties of the obtained films were studied, and the optical band gap was found to be 3.16-3.26 eV. Gas-sensitive properties at 150-300 °C were studied using a wide group of analyte gases: CO, NH3, H2, CH4, C6H6, ethanol, acetone, and NO2. A high response to 100 ppm acetone and ethanol at 225-300 °C and a high and selective response to 300-2000 ppb NO2 at 175 °C were established. The effect of humidity on the magnitude and shape of the signal obtained upon NO2 detection was studied.


Assuntos
Nanocompostos , Óxido de Zinco , Óxido de Zinco/química , Dióxido de Nitrogênio , Acetona , Gases , Biomarcadores , Pulmão
6.
Molecules ; 28(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985485

RESUMO

The hydrothermal synthesis of nickel oxide in the presence of triethanolamine was studied. Furthermore, the relationship between the synthesis conditions, thermal behavior, crystal structure features, phase composition and microstructure of semi-products, and the target oxide nanopowders was established. The thermal behavior of the semi-products was studied using a simultaneous thermal analysis (in particular, using one that involved thermogravimetric analysis and differential scanning calorimetry, TGA/DSC). An X-ray diffraction (XRD) analysis revealed that varying the triethanolamine and nickel chloride concentration in the reaction system can govern the formation of α- and ß-Ni(OH)2-based semi-products that contain Ni(HCO3)2 or Ni2(CO3)(OH)2 as additional components. The set of functional groups in the powders was determined using a Fourier-transform infrared (FTIR) spectroscopy analysis. Using microextrusion printing, a composite NiO-(CeO2)0.80(Sm2O3)0.20 anode film was fabricated. Using XRD, scanning electron microscopy (SEM), and atomic force microscopy (AFM) analyses, it was demonstrated that the crystal structure, dispersity, and microstructure character of the obtained material correspond to the initial nanopowders. Using Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM), the local electrophysical properties of the printed composite film were examined. The value of its conductivity was evaluated using the four-probe method on a direct current in the temperature range of 300-650 °C. The activation energy for the 500-650 °C region, which is of most interest in the context of intermediate-temperature SOFCs working temperatures, has been estimated.

7.
Nanomaterials (Basel) ; 13(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36903729

RESUMO

The titanium carbide MXenes currently attract an extreme amount of interest from the material science community due to their promising functional properties arising from the two-dimensionality of these layered structures. In particular, the interaction between MXene and gaseous molecules, even at the physisorption level, yields a substantial shift in electrical parameters, which makes it possible to design gas sensors working at RT as a prerequisite to low-powered detection units. Herein, we consider to review such sensors, primarily based on Ti3C2Tx and Ti2CTx crystals as the most studied ones to date, delivering a chemiresistive type of signal. We analyze the ways reported in the literature to modify these 2D nanomaterials for (i) detecting various analyte gases, (ii) improving stability and sensitivity, (iii) reducing response/recovery times, and (iv) advancing a sensitivity to atmospheric humidity. The most powerful approach based on designing hetero-layers of MXenes with other crystals is discussed with regard to employing semiconductor metal oxides and chalcogenides, noble metal nanoparticles, carbon materials (graphene and nanotubes), and polymeric components. The current concepts on the detection mechanisms of MXenes and their hetero-composites are considered, and the background reasons for improving gas-sensing functionality in the hetero-composite when compared with pristine MXenes are classified. We formulate state-of-the-art advances and challenges in the field while proposing some possible solutions, in particular via employing a multisensor array paradigm.

8.
Materials (Basel) ; 15(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36556722

RESUMO

The process of the hydrothermal synthesis of hierarchically organized nanomaterials with the core-shell structure with the composition ((CeO2)0.8(Sm2O3)0.2)@NiO was studied, and the prospects for their application in the formation of planar composite structures using microextrusion printing were shown. The hydrothermal synthesis conditions of the (CeO2)0.8(Sm2O3)0.2 nanospheres were determined, and the approach to their surface modification by growing the NiO shell with the formation of core-shell structures equally distributed between the larger nickel(II) oxide nanosheets was developed. The resulting nanopowder was used as a functional ink component in the microextrusion printing of the corresponding composite coating. The microstructure of the powders and the oxide coating was studied by scanning (SEM) and transmission electron microscopy (TEM), the crystal structure was explored by X-ray diffraction analysis (XRD), the set of functional groups in the powders was studied by Fourier-transform infrared spectroscopy (FTIR) spectroscopy, and their thermal behavior in an air flow by synchronous thermal analysis (TGA/DSC). The electronic state of the chemical elements in the resulting coating was studied using X-ray photoelectron spectroscopy (XPS). The surface topography and local electrophysical properties of the composite coating were studied using atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). Using impedance spectroscopy, the temperature dependence of the specific electrical conductivity of the obtained composite coating was estimated.

9.
Sensors (Basel) ; 22(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36560169

RESUMO

The atmospheric pressure solvothermal (APS) synthesis of nanocrystalline SnO2 (average size of coherent scattering regions (CSR)-7.5 ± 0.6 nm) using tin acetylacetonate as a precursor was studied. The resulting nanopowder was used as a functional ink component in microextrusion printing of a tin dioxide thick film on the surface of a Pt/Al2O3/Pt chip. Synchronous thermal analysis shows that the resulting semiproduct is transformed completely into tin dioxide nanopowder at 400 °C within 1 h. The SnO2 powder and the resulting film were shown to have a cassiterite-type structure according to X-ray diffraction analysis, and IR spectroscopy was used to establish the set of functional groups in the material composition. The microstructural features of the tin dioxide powder were analyzed using scanning (SEM) and transmission (TEM) electron microscopy: the average size of the oxide powder particles was 8.2 ± 0.7 nm. Various atomic force microscopy (AFM) techniques were employed to investigate the topography of the oxide film and to build maps of surface capacitance and potential distribution. The temperature dependence of the electrical conductivity of the printed SnO2 film was studied using impedance spectroscopy. The chemosensory properties of the formed material when detecting H2, CO, NH3, C6H6, C3H6O and C2H5OH, including at varying humidity, were also examined. It was demonstrated that the obtained SnO2 film has an increased sensitivity (the sensory response value was 1.4-63.5) and selectivity for detection of 4-100 ppm C2H5OH at an operating temperature of 200 °C.

10.
Materials (Basel) ; 15(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36363430

RESUMO

The process of V2O5 oxide by the combination of sol-gel technique and hydrothermal treatment using heteroligand [VO(C5H7O2)2-x(C4H9O)x] precursor was studied. Using thermal analysis, X-ray powder diffraction (XRD) and infra-red spectroscopy (IR), it was found that the resulting product was VO2(B), which after calcining at 300 °C (1 h), oxidized to orthorhombic V2O5. Scanning electron microscopy (SEM) results for V2O5 powder showed that it consisted of nanosheets (~50 nm long and ~10 nm thick) assembled in slightly spherical hierarchic structures (diameter ~200 nm). VO2 powder dispersion was used as functional ink for microextrusion printing of oxide film. After calcining the film at 300 °C (30 min), it was found that it oxidized to V2O5, with SEM and atomic force microscopy (AFM) results showing that the film structure retained the hierarchic structure of the powder. Using Kelvin probe force microscopy (KPFM), the work function value for V2O5 film in ambient conditions was calculated (4.81 eV), indicating a high amount of deficiencies in the sample. V2O5 film exhibited selective response upon sensing benzene, with response value invariable under changing humidity. Studies of the electrical conductivity of the film revealed increased resistance due to high film porosity, with conductivity activation energy being 0.26 eV.

11.
Micromachines (Basel) ; 14(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36677064

RESUMO

In this paper, NiO, La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and (CeO2)0.8(Sm2O3)0.2 (SDC) nanopowders with different microstructures were obtained using hydrothermal and glycol-citrate methods. The microstructural features of the powders were examined using scanning electron microscopy (SEM). The obtained oxide powders were used to form functional inks for the sequential microextrusion printing of NiO-SDC, SDC and LSCF-SDC coatings with resulting three-layer structures of (NiO-SDC)/SDC/(LSCF-SDC) composition. The crystal structures of these layers were studied using an X-ray diffraction analysis, and the microstructures were studied using atomic force microscopy. Scanning capacitance microscopy was employed to build maps of capacitance gradient distribution over the surface of the oxide layers, and Kelvin probe force microscopy was utilized to map surface potential distribution and to estimate the work function values of the studied oxide layers. Using SEM and an energy-dispersive X-ray microanalysis, the cross-sectional area of the formed three-layer structure was analyzed-the interfacial boundary and the chemical element distribution over the surface of the cross-section were investigated. Using impedance spectroscopy, the temperature dependence of the electrical conductivity was also determined for the printed three-layer nanostructure.

12.
J Colloid Interface Sci ; 588: 209-220, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33388583

RESUMO

The formation process for planar solid electrolytes in the CeO2-Y2O3 system has been studied using efficient, high-performance, high-resolution microplotter printing technology, using functional ink based on nanopowders (the average size of crystallites was 12-15 nm) of a similar composition obtained by programmed coprecipitation of metal hydroxides. The dependence of the microstructure of the oxide nanoparticles obtained and their crystal structure on yttrium concentration has been studied using a wide range of methods. According to X-ray diffraction (XRD), the nanopowders and coatings produced are single-phase, with a cubic crystal structure of the fluorite type, and the electronic state and content of cerium and yttrium in the printed coatings have been determined using X-ray photoelectron spectroscopy (XPS). The results of scanning electron (SEM) and atomic force microscopy (AFM) have shown that the coatings produced are homogeneous, they do not contain defects in the form of fractures and the height difference over an area of 1 µm2 is 30-45 nm. The local electrophysical characteristics of the oxide coatings produced (the work function of the coating surface, capacitance values, maps of the surface potential and capacitive contrast distribution over the surface) have been studied using Kelvin-probe force microscopy (KPFM) and scanning capacitive microscopy (SCM). Using impedance spectroscopy, the dependence of the electrophysical characteristics of printed planar solid electrolytes in the CeO2-Y2O3 system on yttrium content has been determined and the prospects of the technology developed for the manufacture of modern, intermediate-temperature, solid oxide fuel cells have been demonstrated.

13.
Nanomaterials (Basel) ; 12(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35010086

RESUMO

In this article, a facile, one-step method for the formation of silver thin-film nanostructures on the surface of Al2O3 substrates using the hydrothermal method is proposed. The dependence of the SERS effect intensity of the formed films during the detection of methylene blue (MB) low concentrations on the synthesis conditions, additional temperature treatment, and laser radiation wavelength (532 and 780 nm) in comparison with similar dye films on commercial SERS substrates is shown. The detection limit of the analyte used for the indicated lasers is estimated. The effect of the synthesis temperature on the particle size, crystal structure, and microstructure features of the obtained thin films based on silver nanoparticles is demonstrated. Using spreading resistance microscopy, the interface between the substrate and Ag particles is studied, and the dependence of the size of the corresponding gap between them and the nature of microstructural defects on the parameters of hydrothermal treatment of reaction systems in the presence of Al2O3 substrates is shown. As a result of the study, the factors associated with the properties of the obtained SERS substrates and the parameters of recording the spectra, which affect the amplification factor of the spectral lines intensity of the analyte, are revealed.

14.
Talanta ; 221: 121455, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33076078

RESUMO

In2O3-10%SnO2 (ITO) thin films on various substrates have been obtained by pen plotter printing using a solution of hydrolytically active heteroligand complexes [M(C5H7O2)x(C4H9O)y] (where М = In3+ and Sn4+) as a functional ink. According to XRD and Raman spectroscopy, it has been established that the film has a bixbyite structure (space group Ia3/Th7), consists of particles with an average size of about 20 nm (according to SEM and AFM) and has a band gap of 3.57 eV. In order to obtain the ITO film, the temperature dependence of resistivity characterised by a minimum at 150 °C has been determined, and its gas-sensitive properties have been studied. It has been shown that the greatest resistive response is observed to carbon monoxide at 200 °C, and the film has a high sensitivity to low concentrations of CO. Two possible models describing the dependence of the sensory response on the CO concentration have been suggested. The mechanisms of defect formation in the ITO film structure and CO detection, including in a humid environment, have been considered in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...